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COz2 emissions from energy production
in the U.S. changed by what fraction
from 2007 to 2015?

1. Increased by 5% or more

2. Changed by -5% to +5%

3. Decreased 5 - 10%

4. Decreased by more than 10%
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By 2030, the world will need 45% more energy,

while reducing greenhouse gas (GHG) emissions.
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American
Chemistry Working Group on Catalysis
Council

Objective: To elevate public and private sector interest in advancing R&D
associated with improving the top energy consuming catalytic processes.

Goal: To promote exchange of ideas on ways to increase opportunities for
R&D in catalysis and address barriers to such activities.



The shale gas boom transformed the competitive
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position of U.S. chemical manufacturers.
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Top Processes: Energy use vs. production
volumes of 18 largest chemicals, 2010

Energy Consumption 2010 [PJ]
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10 years ago, this talk could not have happened.
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Active site design

In silico formulation and
performance evaluation

Catalyst

Fundamentals

4

Thermodynamics

Selectivity optimization




Which areas of R&D would be most
important for reducing barriers/gaps?

Catalyst structure/property work

New material research

Kinetics combined with in situ characterization

High throughput testing/characterization
Separations/membranes

Novel reactors/membranes

Process/catalyst integration

Do cost/process sensitivity to focus on greatest impact

Focus on technology scale-up not discovery
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Kim, Y, et al. Modular Chemical Process Intensification: A
Review. Annu. Rev. Chem. Biomol. Eng. 2017. 8, 16.1-16.22.



“Almost every advance in petrochemical processes

came about because of the invention of a new material.”
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Separations and Recycling account for

50% & 80%

of CapEx of OpEx

for an ethane cracker
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public and private
commitments




$15-30 MM over 10 Years Envisioned
Funding for Hydrocarbon Conversion

$470 MM Federal Grant Funds for
Basic Chemical Research in 2016

$20 MM ACS PRF Grant for Petrochemical Research

$92M Chemical Transformations Research from
DOE Basic Energy Sciences

$169 MM in NSF Grant for ENG/CBET Chemical
Process Systems

$189 MM in NSF Grant Funds for MPS/CHE

$800 BN Revenue of the U.S.
Chemical Industry

ﬁ
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RAPID RAPID’s Industry-Led Vision

Transfcnnmg Process Industries

A dynamic network of partners who collectively
build a sustainable ecosystem that:

.. researches, develops and broadly
commercializes new technology for modular
chemical process intensification

.. delivers dramatic reductions in energy,
greenhouse gas, capital and operating cost

.. makes U.S. Manufacturing and our workforce
more competitive

RAPID’s Ecosystem

Industry leaders, researchers, educators,
engineers, operators and facilities

RAPID

Transfurmlng Process Industries

Our Mandate

Research, develop and demonstrate high-impact modular chemical process
intensification solutions for U.S. Manufacturing.

Actively build RAPID membership.

Leverage $70 million of DOE funding with member cost share.

Benefit a wide range of stakeholders.

Enable access to process intensification resources, tools, expertise & facilities.

Establish a technical education and workforce development program.

““The goal for these Institutes is to revitalize American manufacturing

and support domestic manufacturing competitiveness.”

— U.S. DOE




Potential Benefits Potential Losses

Accelerated economic growth
and innovation

Weakened global competitiveness
of U.S. companies

New high-paying STEM jobs and a

: : : Slower economic growth
resurgence in chemical manufacturing

Higher labor costs and
erosion in skill levels

Energy efficiency improvement
and lower emissions

Stagnation in resource efficiency and

Enhanced living standards Hnre .
optimization of materials

and communities

Capital inefficiencies through project
overruns, opportunity expenses,
and failed commissioning

Lower barriers to the adoption of
new technologies

Building scientific capital in chemistry,
a field that's vital to our nation




The Perennial Question:
What Does Industry Want?
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